

Case Study

MQ Transaction Monitoring for an
Aviation Supply Chain System

About The Client

 The client is a neutral purchasing portal for the aviation industry based
in Irving, Texas. Founded in July 2000 and commenced operations a
couple of months later on October 1, 2000. Their service focuses on
the repair, replenishment, sourcing, inventory pooling and other critical
operations in the aviation supply chain. It automates the exchange of
documents and information for commercial transactions.

CHALLENGES

Client wanted to have
visibility, access and control
over critical business
transactions to quickly
isolate and resolve
potential performance from
multiple vantage points and
environments.

SOLUTION

With the increased focus on
compliance, Royal Cyber
helped them in many ways
to reduce operational risk,
in many transactional
areas.

USE CASE

The client in aviation supply

chain solution wanted to

track and audit business

transactions. This visibility

lets the business not only to

measure how well their

services achieve, but also

improve them end-to-end.

Business Challenges

Client wanted a solution to track and audit business transactions. They

have vendors who communicate over MQ cluster channels. Hence,

they wanted to track the messages that are communicated over MQ

channels with those external partners. Also, they wanted to make an

audit record for internal applications for producing/consuming

messages to/from queues.

Our Approach/Solution

WebSphere MQ has an exit interface to
interact with each MQ API call. API exit
can be invoked both before API execution
and after API execution. In calling API exit
programs, all parameters passed by MQ
API caller are passed to API exit as they
are. All parameters returned by MQ are
also passed to API exit after API
execution. In addition to API exit, exit
interface in sending and receiving
message data via MQ channels is also
available. Setting up and configuring IBM
MA0W SupportPac (API trace utility)
provides a mechanism to trace all MQ API
calls including parameters and process
results in an easy way.

At a Glance

INDUSTRY
Aviation Supply Chain
Solutions

LOCATION
United States

 Diagnose and
mitigate issue in no
time

 Saving $ by
minimizing overtime
payments to
employees

 Saving employee’s
time

 Audit and log all
business transactions

Key Takeaways

The customer gained the following features by implementing the
solution:

Functional highlights in getting trace data

 All parameter values passed by MQ applications can be traced
completely. (API exit)

 All parameter values set by MQ can be traced completely
including completion code and reason code. (API exit)

 Time before API call, time after API call and process time of
each API calls are shown for each API call. Time unit is in
microsecond on UNIX systems. On Windows, time unit is in
millisecond and 64-bit performance counter based on CPU
clock is shown in addition, so that process time can be
identified in detail. (API exit)

 All MQ messages transferred via MQ channels can be traced
completely. (channel exit)

 Parameter values are parsed and shown in the format of easy
view.

 Total call count for each API is shown as a summary. Success
count, warning count and fail count are also shown respectively.

 Process time of each API call is shown in detail output and
summary output. Average time, minimum time and maximum
time are also shown at the last of trace data. (API exit)

 Multiple byte character set (MBCS) handling is considered for
text output.

Supplemental functions in getting trace data

 Trace data can be put to multiple files when data volume
becomes large. In default setting, new trace files are created in
every 100MB trace data.

 File compression program can be invoked at the creation time
of new trace file to reduce disk space usage.

 It is useful for long run test putting large data volume.

 Operating environment, process name, and related
process/thread information are shown as a part of context
information.

 Target queue name and/or process name to be traced can be
specified to eliminate unnecessary data for minimizing output
data and also for minimizing performance degradation.

 Alert files can be generated

Royal Cyber Inc. HQ: Naperville, IL

55 Shuman Blvd, Suite 275,
Naperville, IL 60563 USA.

+1.630.355.6292
info@royalcyber.com

www.royalcyber.com

ABOUT US

Royal Cyber Inc. (HQ: Naperville, IL) is a leading software organization that
provides services ranging from application development and deployment to
training and consultancy.

Having operations in nine countries and over 1000 domain specialists, Royal
Cyber is an award winner under numerous categories for global IT
implementations across industry verticals.

Copyright © 2002-2017 RoyalCyber.com. All Rights Reserved.

